Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 15(1): 1700, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402224

RESUMO

The Ataxia telangiectasia and Rad3-related (ATR) inhibitor ceralasertib in combination with the PD-L1 antibody durvalumab demonstrated encouraging clinical benefit in melanoma and lung cancer patients who progressed on immunotherapy. Here we show that modelling of intermittent ceralasertib treatment in mouse tumor models reveals CD8+ T-cell dependent antitumor activity, which is separate from the effects on tumor cells. Ceralasertib suppresses proliferating CD8+ T-cells on treatment which is rapidly reversed off-treatment. Ceralasertib causes up-regulation of type I interferon (IFNI) pathway in cancer patients and in tumor-bearing mice. IFNI is experimentally found to be a major mediator of antitumor activity of ceralasertib in combination with PD-L1 antibody. Improvement of T-cell function after ceralasertib treatment is linked to changes in myeloid cells in the tumor microenvironment. IFNI also promotes anti-proliferative effects of ceralasertib on tumor cells. Here, we report that broad immunomodulatory changes following intermittent ATR inhibition underpins the clinical therapeutic benefit and indicates its wider impact on antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Indóis , Morfolinas , Neoplasias , Pirimidinas , Sulfonamidas , Humanos , Animais , Camundongos , Antígeno B7-H1 , Microambiente Tumoral , Linhagem Celular Tumoral , Imunoterapia , Modelos Animais de Doenças , Proteínas Mutadas de Ataxia Telangiectasia
3.
Sci Adv ; 10(9): eadj4678, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416830

RESUMO

Cancer immunity is subjected to spatiotemporal regulation by leukocyte interaction with neoplastic and stromal cells, contributing to immune evasion and immunotherapy resistance. Here, we identify a distinct mesenchymal-like population of endothelial cells (ECs) that form an immunosuppressive vascular niche in glioblastoma (GBM). We reveal a spatially restricted, Twist1/SATB1-mediated sequential transcriptional activation mechanism, through which tumor ECs produce osteopontin to promote immunosuppressive macrophage (Mφ) phenotypes. Genetic or pharmacological ablation of Twist1 reverses Mφ-mediated immunosuppression and enhances T cell infiltration and activation, leading to reduced GBM growth and extended mouse survival, and sensitizing tumor to chimeric antigen receptor T immunotherapy. Thus, these findings uncover a spatially restricted mechanism controlling tumor immunity and suggest that targeting endothelial Twist1 may offer attractive opportunities for optimizing cancer immunotherapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Glioblastoma/genética , Células Endoteliais/patologia , Linhagem Celular Tumoral , Macrófagos , Terapia de Imunossupressão , Neoplasias Encefálicas/genética
4.
Mol Cancer Res ; 22(4): 360-372, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38236939

RESUMO

Rapidly proliferating cancer cells require a microenvironment where essential metabolic nutrients like glucose, oxygen, and growth factors become scarce as the tumor volume surpasses the established vascular capacity of the tissue. Limits in nutrient availability typically trigger growth arrest and/or apoptosis to prevent cellular expansion. However, tumor cells frequently co-opt cellular survival pathways thereby favoring cell survival under this environmental stress. The unfolded protein response (UPR) pathway is typically engaged by tumor cells to favor adaptation to stress. PERK, an endoplasmic reticulum (ER) protein kinase and UPR effector is activated in tumor cells and contributes tumor cell adaptation by limiting protein translation and balancing redox stress. PERK also induces miRNAs that contribute to tumor adaptation. miR-211 and miR-216b were previously identified as PERK-ATF4-regulated miRNAs that regulate cell survival. We have identified another PERK-responsive miRNA, miR-217, with increased expression under prolonged ER stress. Key targets of miR-217 are identified as TRPM1, the host gene for miR-211 and EZH2. Evidence is provided that miR-217 expression is essential for the rapid loss of miR-211 in prolonged ER stress and provides a functional link for determining whether cells adapt to stress or commit to apoptosis. IMPLICATIONS: PERK-dependent induction of miR-217 limits accumulation and function of the prosurvival miRNA, miR-211, to establish cell fate and promote cell commitment to apoptosis.


Assuntos
MicroRNAs , Neoplasias , Canais de Cátion TRPM , Humanos , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Estresse do Retículo Endoplasmático/genética , Resposta a Proteínas não Dobradas , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/fisiologia , Neoplasias/genética , Microambiente Tumoral , Canais de Cátion TRPM/genética
5.
bioRxiv ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37745612

RESUMO

In pancreatic ductal adenocarcinoma (PDAC), the fibroblastic stroma constitutes most of the tumor mass and is remarkably devoid of functional blood vessels. This raises an unresolved question of how PDAC cells obtain essential metabolites and water-insoluble lipids. We have found a critical role for cancer-associated fibroblasts (CAFs) in obtaining and transferring lipids from blood-borne particles to PDAC cells via trogocytosis of CAF plasma membranes. We have also determined that CAF-expressed phospholipid scramblase anoctamin 6 (ANO6) is an essential CAF trogocytosis regulator required to promote PDAC cell survival. During trogocytosis, cancer cells and CAFs form synapse-like plasma membranes contacts that induce cytosolic calcium influx in CAFs via Orai channels. This influx activates ANO6 and results in phosphatidylserine exposure on CAF plasma membrane initiating trogocytosis and transfer of membrane lipids, including cholesterol, to PDAC cells. Importantly, ANO6-dependent trogocytosis also supports the immunosuppressive function of pancreatic CAFs towards cytotoxic T cells by promoting transfer of excessive amounts of cholesterol. Further, blockade of ANO6 antagonizes tumor growth via disruption of delivery of exogenous cholesterol to cancer cells and reverses immune suppression suggesting a potential new strategy for PDAC therapy.

6.
Cancer Res ; 83(16): 2790-2806, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37115855

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has shown remarkable success in the treatment of hematologic malignancies. Unfortunately, it has limited efficacy against solid tumors, even when the targeted antigens are well expressed. A better understanding of the underlying mechanisms of CAR T-cell therapy resistance in solid tumors is necessary to develop strategies to improve efficacy. Here we report that solid tumors release small extracellular vesicles (sEV) that carry both targeted tumor antigens and the immune checkpoint protein PD-L1. These sEVs acted as cell-free functional units to preferentially interact with cognate CAR T cells and efficiently inhibited their proliferation, migration, and function. In syngeneic mouse tumor models, blocking tumor sEV secretion not only boosted the infiltration and antitumor activity of CAR T cells but also improved endogenous antitumor immunity. These results suggest that solid tumors use sEVs as an active defense mechanism to resist CAR T cells and implicate tumor sEVs as a potential therapeutic target to optimize CAR T-cell therapy against solid tumors. SIGNIFICANCE: Small extracellular vesicles secreted by solid tumors inhibit CAR T cells, which provide a molecular explanation for CAR T-cell resistance and suggests that strategies targeting exosome secretion may enhance CAR T-cell efficacy. See related commentary by Ortiz-Espinosa and Srivastava, p. 2637.


Assuntos
Vesículas Extracelulares , Neoplasias , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias/metabolismo , Linfócitos T , Imunoterapia Adotiva/métodos , Antígenos de Neoplasias , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Receptores de Antígenos de Linfócitos T
7.
Cell Metab ; 35(3): 517-534.e8, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36804058

RESUMO

The efficacy of immunotherapy is limited by the paucity of T cells delivered and infiltrated into the tumors through aberrant tumor vasculature. Here, we report that phosphoglycerate dehydrogenase (PHGDH)-mediated endothelial cell (EC) metabolism fuels the formation of a hypoxic and immune-hostile vascular microenvironment, driving glioblastoma (GBM) resistance to chimeric antigen receptor (CAR)-T cell immunotherapy. Our metabolome and transcriptome analyses of human and mouse GBM tumors identify that PHGDH expression and serine metabolism are preferentially altered in tumor ECs. Tumor microenvironmental cues induce ATF4-mediated PHGDH expression in ECs, triggering a redox-dependent mechanism that regulates endothelial glycolysis and leads to EC overgrowth. Genetic PHGDH ablation in ECs prunes over-sprouting vasculature, abrogates intratumoral hypoxia, and improves T cell infiltration into the tumors. PHGDH inhibition activates anti-tumor T cell immunity and sensitizes GBM to CAR T therapy. Thus, reprogramming endothelial metabolism by targeting PHGDH may offer a unique opportunity to improve T cell-based immunotherapy.


Assuntos
Glioblastoma , Receptores de Antígenos Quiméricos , Animais , Camundongos , Humanos , Glioblastoma/terapia , Glioblastoma/metabolismo , Fosfoglicerato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva , Linfócitos T/metabolismo , Microambiente Tumoral
8.
JCO Precis Oncol ; 7: e2100498, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652667

RESUMO

PURPOSE: T-cell-mediated cytotoxicity is suppressed when programmed cell death-1 (PD-1) is bound by PD-1 ligand-1 (PD-L1) or PD-L2. Although PD-1 inhibitors have been approved for triple-negative breast cancer, the lower response rates of 25%-30% in estrogen receptor-positive (ER+) breast cancer will require markers to identify likely responders. The focus of this study was to evaluate whether PD-L2, which has higher affinity than PD-L1 for PD-1, is a predictor of early recurrence in ER+ breast cancer. METHODS: PD-L2 protein levels in cancer cells and stromal cells of therapy-naive, localized or locoregional ER+ breast cancers were measured retrospectively by quantitative immunofluorescence histocytometry and correlated with progression-free survival (PFS) in the main study cohort (n = 684) and in an independent validation cohort (n = 273). All patients subsequently received standard-of-care adjuvant therapy without immune checkpoint inhibitors. RESULTS: Univariate analysis of the main cohort revealed that high PD-L2 expression in cancer cells was associated with shorter PFS (hazard ratio [HR], 1.8; 95% CI, 1.3 to 2.6; P = .001), which was validated in an independent cohort (HR, 2.3; 95% CI, 1.1 to 4.8; P = .026) and remained independently predictive after multivariable adjustment for common clinicopathological variables (HR, 2.0; 95% CI, 1.4 to 2.9; P < .001). Subanalysis of the ER+ breast cancer patients treated with adjuvant chemotherapy (n = 197) revealed that high PD-L2 levels in cancer cells associated with short PFS in univariate (HR, 2.5; 95% CI, 1.4 to 4.4; P = .003) and multivariable analyses (HR, 3.4; 95% CI, 1.9 to 6.2; P < .001). CONCLUSION: Up to one third of treatment-naive ER+ breast tumors expressed high PD-L2 levels, which independently predicted poor clinical outcome, with evidence of further elevated risk of progression in patients who received adjuvant chemotherapy. Collectively, these data warrant studies to gain a deeper understanding of PD-L2 in the progression of ER+ breast cancer and may provide rationale for immune checkpoint blockade for this patient group.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Humanos , Receptor de Morte Celular Programada 1 , Estudos Retrospectivos
9.
Mol Cancer Res ; 21(3): 228-239, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36378658

RESUMO

Cholesterol dependence is an essential characteristic of pancreatic ductal adenocarcinoma (PDAC). Cholesterol 25-hydroxylase (CH25H) catalyzes monooxygenation of cholesterol into 25-hydroxycholesterol, which is implicated in inhibiting cholesterol biosynthesis and in cholesterol depletion. Here, we show that, within PDAC cells, accumulation of cholesterol was facilitated by the loss of CH25H. Methylation of the CH25H gene and decreased levels of CH25H expression occurred in human pancreatic cancers and was associated with poor prognosis. Knockout of Ch25h in mice accelerated progression of Kras-driven pancreatic intraepithelial neoplasia. Conversely, restoration of CH25H expression in human and mouse PDAC cells decreased their viability under conditions of cholesterol deficit, and decelerated tumor growth in immune competent hosts. Mechanistically, the loss of CH25H promoted autophagy resulting in downregulation of MHC-I and decreased CD8+ T-cell tumor infiltration. Re-expression of CH25H in PDAC cells combined with immune checkpoint inhibitors notably inhibited tumor growth. We discuss additional benefits that PDAC cells might gain from inactivation of CH25H and the potential translational importance of these findings for therapeutic approaches to PDAC. IMPLICATIONS: Loss of CH25H by pancreatic cancer cells may stimulate tumor progression and interfere with immunotherapies.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Esteroide Hidroxilases , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/patologia , Camundongos Knockout , Neoplasias Pancreáticas/patologia , Esteroide Hidroxilases/metabolismo , Neoplasias Pancreáticas
10.
Cancer Immunol Immunother ; 72(4): 815-826, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36063172

RESUMO

Immune suppressive factors of the tumor microenvironment (TME) undermine viability and exhaust the activities of the intratumoral cytotoxic CD8 + T lymphocytes (CTL) thereby evading anti-tumor immunity and decreasing the benefits of immune therapies. To counteract this suppression and improve the efficacy of therapeutic regimens, it is important to identify and understand the critical regulators within CD8 + T cells that respond to TME stress and tumor-derived factors. Here we investigated the regulation and importance of activating transcription factor-4 (ATF4) in CTL using a novel Atf4ΔCD8 mouse model lacking ATF4 specifically in CD8 + cells. Induction of ATF4 in CD8 + T cells occurred in response to antigenic stimulation and was further increased by exposure to tumor-derived factors and TME conditions. Under these conditions, ATF4 played a critical role in the maintenance of survival and activities of CD8 + T cells. Conversely, selective ablation of ATF4 in CD8 + T cells in mice rendered these Atf4ΔCD8 hosts prone to accelerated growth of implanted tumors. Intratumoral ATF4-deficient CD8 + T cells were under-represented compared to wild-type counterparts and exhibited impaired activation and increased apoptosis. These findings identify ATF4 as an important regulator of viability and activity of CD8 + T cells in the TME and argue for caution in using agents that could undermine these functions of ATF4 for anti-cancer therapies.


Assuntos
Linfócitos do Interstício Tumoral , Neoplasias , Camundongos , Animais , Linfócitos T CD8-Positivos , Linfócitos T Citotóxicos , Fatores Ativadores da Transcrição , Microambiente Tumoral
11.
Nat Commun ; 13(1): 6623, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333297

RESUMO

Activities of dendritic cells (DCs) that present tumor antigens are often suppressed in tumors. Here we report that this suppression is induced by tumor microenvironment-derived factors, which activate the activating transcription factor-3 (ATF3) transcription factor and downregulate cholesterol 25-hydroxylase (CH25H). Loss of CH25H in antigen presenting cells isolated from human lung tumors is associated with tumor growth and lung cancer progression. Accordingly, mice lacking CH25H in DCs exhibit an accelerated tumor growth, decreased infiltration and impaired activation of intratumoral CD8+ T cells. These mice do not establish measurable long-term immunity against malignant cells that undergo chemotherapy-induced immunogenic cell death. Mechanistically, downregulation of CH25H stimulates membrane fusion between endo-phagosomes and lysosomes, accelerates lysosomal degradation and restricts cross-presentation of tumor antigens in the intratumoral DCs. Administration of STING agonist MSA-2 reduces the lysosomal activity in DCs, restores antigen cross presentation, and increases therapeutic efficacy of PD-1 blockade against tumour challenge in a CH25H-dependent manner. These studies highlight the importance of downregulation of CH25H in DCs for tumor immune evasion and resistance to therapy.


Assuntos
Apresentação Cruzada , Neoplasias Pulmonares , Camundongos , Humanos , Animais , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Células Dendríticas , Neoplasias Pulmonares/metabolismo , Lisossomos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
12.
Nat Commun ; 13(1): 6614, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329064

RESUMO

Heterogeneous Nuclear Ribonucleoprotein K (hnRNPK) is a multifunctional RNA binding protein (RBP) localized in the nucleus and the cytoplasm. Abnormal cytoplasmic enrichment observed in solid tumors often correlates with poor clinical outcome. The mechanism of cytoplasmic redistribution and ensuing functional role of cytoplasmic hnRNPK remain unclear. Here we demonstrate that the SCFFbxo4 E3 ubiquitin ligase restricts the pro-oncogenic activity of hnRNPK via K63 linked polyubiquitylation, thus limiting its ability to bind target mRNA. We identify SCFFbxo4-hnRNPK responsive mRNAs whose products regulate cellular processes including proliferation, migration, and invasion. Loss of SCFFbxo4 leads to enhanced cell invasion, migration, and tumor metastasis. C-Myc was identified as one target of SCFFbxo4-hnRNPK. Fbxo4 loss triggers hnRNPK-dependent increase in c-Myc translation, thereby contributing to tumorigenesis. Increased c-Myc positions SCFFbxo4-hnRNPK dysregulated cancers for potential therapeutic interventions that target c-Myc-dependence. This work demonstrates an essential role for limiting cytoplasmic hnRNPK function in order to maintain translational and cellular homeostasis.


Assuntos
Carcinogênese , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Carcinogênese/genética , Ubiquitinação , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Oncogenes , RNA Mensageiro/metabolismo
13.
Cancer Immunol Res ; 10(12): 1490-1505, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36255418

RESUMO

Fragility of regulatory T (Treg) cells manifested by the loss of neuropilin-1 (NRP1) and expression of IFNγ undermines the immune suppressive functions of Treg cells and contributes to the success of immune therapies against cancers. Intratumoral Treg cells somehow avoid fragility; however, the mechanisms by which Treg cells are protected from fragility in the tumor microenvironment are not well understood. Here, we demonstrate that the IFNAR1 chain of the type I IFN (IFN1) receptor was downregulated on intratumoral Treg cells. Downregulation of IFNAR1 mediated by p38α kinase protected Treg cells from fragility and maintained NRP1 levels, which were decreased in response to IFN1. Genetic or pharmacologic inactivation of p38α and stabilization of IFNAR1 in Treg cells induced fragility and inhibited their immune suppressive and protumorigenic activities. The inhibitor of sumoylation TAK981 (Subasumstat) upregulated IFNAR1, eliciting Treg fragility and inhibiting tumor growth in an IFNAR1-dependent manner. These findings describe a mechanism by which intratumoral Treg cells retain immunosuppressive activities and suggest therapeutic approaches for inducing Treg fragility and increasing the efficacy of immunotherapies.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Microambiente Tumoral , Neuropilina-1 , Imunoterapia
14.
Cell Metab ; 34(9): 1342-1358.e7, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070682

RESUMO

Effector trogocytosis between malignant cells and tumor-specific cytotoxic T lymphocytes (CTLs) contributes to immune evasion through antigen loss on target cells and fratricide of antigen-experienced CTLs by other CTLs. The mechanisms regulating these events in tumors remain poorly understood. Here, we demonstrate that tumor-derived factors (TDFs) stimulated effector trogocytosis and restricted CTLs' tumoricidal activity and viability in vitro. TDFs robustly altered the CTL's lipid profile, including depletion of 25-hydroxycholesterol (25HC). 25HC inhibited trogocytosis and prevented CTL's inactivation and fratricide. Mechanistically, TDFs induced ATF3 transcription factor that suppressed the expression of 25HC-regulating gene-cholesterol 25-hydroxylase (CH25H). Stimulation of trogocytosis in the intratumoral CTL by the ATF3-CH25H axis attenuated anti-tumor immunity, stimulated tumor growth, and impeded the efficacy of chimeric antigen receptor (CAR) T cell adoptive therapy. Through use of armored CAR constructs or pharmacologic agents restoring CH25H expression, we reversed these phenotypes and increased the efficacy of immunotherapies.


Assuntos
Linfócitos T Citotóxicos , Trogocitose , Imunoterapia , Esteroide Hidroxilases , Replicação Viral/genética
15.
Nat Cell Biol ; 24(6): 940-953, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654839

RESUMO

Bidirectional signalling between the tumour and stroma shapes tumour aggressiveness and metastasis. ATF4 is a major effector of the Integrated Stress Response, a homeostatic mechanism that couples cell growth and survival to bioenergetic demands. Using conditional knockout ATF4 mice, we show that global, or fibroblast-specific loss of host ATF4, results in deficient vascularization and a pronounced growth delay of syngeneic melanoma and pancreatic tumours. Single-cell transcriptomics of tumours grown in Atf4Δ/Δ mice uncovered a reduction in activation markers in perivascular cancer-associated fibroblasts (CAFs). Atf4Δ/Δ fibroblasts displayed significant defects in collagen biosynthesis and deposition and a reduced ability to support angiogenesis. Mechanistically, ATF4 regulates the expression of the Col1a1 gene and levels of glycine and proline, the major amino acids of collagen. Analyses of human melanoma and pancreatic tumours revealed a strong correlation between ATF4 and collagen levels. Our findings establish stromal ATF4 as a key driver of CAF functionality, malignant progression and metastasis.


Assuntos
Fibroblastos Associados a Câncer , Melanoma , Neoplasias Pancreáticas , Animais , Fibroblastos Associados a Câncer/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Camundongos , Camundongos Knockout , Neovascularização Patológica/metabolismo , Neoplasias Pancreáticas/patologia
16.
J Leukoc Biol ; 112(5): 955-968, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35726818

RESUMO

Transitory appearance of immune suppressive polymorphonuclear neutrophils (PMNs) defined as myeloid-derived suppressor cells (PMNs-MDSCs) in newborns is important for their protection from inflammation associated with newly established gut microbiota. Here, we report that inhibition of the type I IFN (IFN1) pathway played a major role in regulation of PMNs-MDSCs-suppressive activity during first weeks of life. Expression of the IFN1 receptor IFNAR1 was markedly lower in PMNs-MDSCs. However, in newborn mice, down-regulation of IFNAR1 was not sufficient to render PMNs immune suppressive. That also required the presence of a positive signal from lactoferrin via its receptor low-density lipoprotein receptor-related protein 2. The latter effect was mediated via NF-κB activation, which was tempered by IFN1 in a manner that involved suppressor of cytokine signaling 3. Thus, we discovered a mechanism of tight regulation of immune suppressive PMNs-MDSCs in newborns, which may be used in the development of therapies of neonatal pathologies.


Assuntos
Células Supressoras Mieloides , Camundongos , Animais , Neutrófilos , Lactoferrina/metabolismo , NF-kappa B/metabolismo , Citocinas/metabolismo , Lipoproteínas LDL/metabolismo
17.
Nat Cancer ; 3(7): 808-820, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35637402

RESUMO

Evasion of antitumor immunity and resistance to therapies in solid tumors are aided by an immunosuppressive tumor microenvironment (TME). We found that TME factors, such as regulatory T cells and adenosine, downregulated type I interferon receptor IFNAR1 on CD8+ cytotoxic T lymphocytes (CTLs). These events relied upon poly-ADP ribose polymerase-11 (PARP11), which was induced in intratumoral CTLs and acted as a key regulator of the immunosuppressive TME. Ablation of PARP11 prevented loss of IFNAR1, increased CTL tumoricidal activity and inhibited tumor growth in an IFNAR1-dependent manner. Accordingly, genetic or pharmacologic inactivation of PARP11 augmented the therapeutic benefits of chimeric antigen receptor T cells. Chimeric antigen receptor CTLs engineered to inactivate PARP11 demonstrated a superior efficacy against solid tumors. These findings highlight the role of PARP11 in the immunosuppressive TME and provide a proof of principle for targeting this pathway to optimize immune therapies.


Assuntos
Neoplasias , Poli(ADP-Ribose) Polimerases/metabolismo , Receptores de Antígenos Quiméricos , Humanos , Terapia de Imunossupressão , Imunoterapia Adotiva , Neoplasias/tratamento farmacológico , Receptores de Antígenos Quiméricos/genética , Microambiente Tumoral
18.
Nucleic Acids Res ; 50(9): 5129-5144, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35489071

RESUMO

Homeostasis of meiotic DNA double strand breaks (DSB) is critical for germline genome integrity and homologous recombination. Here we demonstrate an essential role for SKP1, a constitutive subunit of the SCF (SKP1-Cullin-F-box) ubiquitin E3 ligase, in early meiotic processes. SKP1 restrains accumulation of HORMAD1 and the pre-DSB complex (IHO1-REC114-MEI4) on the chromosome axis in meiotic germ cells. Loss of SKP1 prior to meiosis leads to aberrant localization of DSB repair proteins and a failure in synapsis initiation in meiosis of both males and females. Furthermore, SKP1 is crucial for sister chromatid cohesion during the pre-meiotic S-phase. Mechanistically, FBXO47, a meiosis-specific F-box protein, interacts with SKP1 and HORMAD1 and targets HORMAD1 for polyubiquitination and degradation in HEK293T cells. Our results support a model wherein the SCF ubiquitin E3 ligase prevents hyperactive DSB formation through proteasome-mediated degradation of HORMAD1 and subsequent modulation of the pre-DSB complex during meiosis.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas Ligases SKP Culina F-Box , Proteínas de Ciclo Celular/metabolismo , DNA , Feminino , Células HEK293 , Recombinação Homóloga , Humanos , Masculino , Meiose/genética , Proteínas Ligases SKP Culina F-Box/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/genética
19.
Sci Adv ; 7(38): eabc8145, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34524841

RESUMO

Most breast cancer deaths are caused by estrogen receptor-α­positive (ER+) disease. Preclinical progress is hampered by a shortage of therapy-naïve ER+ tumor models that recapitulate metastatic progression and clinically relevant therapy resistance. Human prolactin (hPRL) is a risk factor for primary and metastatic ER+ breast cancer. Because mouse prolactin fails to activate hPRL receptors, we developed a prolactin-humanized Nod-SCID-IL2Rγ (NSG) mouse (NSG-Pro) with physiological hPRL levels. Here, we show that NSG-Pro mice facilitate establishment of therapy-naïve, estrogen-dependent PDX tumors that progress to lethal metastatic disease. Preclinical trials provide first-in-mouse efficacy of pharmacological hPRL suppression on residual ER+ human breast cancer metastases and document divergent biology and drug responsiveness of tumors grown in NSG-Pro versus NSG mice. Oncogenomic analyses of PDX lines in NSG-Pro mice revealed clinically relevant therapy-resistance mechanisms and unexpected, potently actionable vulnerabilities such as DNA-repair aberrations. The NSG-Pro mouse unlocks previously inaccessible precision medicine approaches for ER+ breast cancers.

20.
Sci Transl Med ; 13(611): eaba7791, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524860

RESUMO

SUMOylation, the covalent conjugation of small ubiquitin-like modifier (SUMO) proteins to protein substrates, has been reported to suppress type I interferon (IFN1) responses. TAK-981, a selective small-molecule inhibitor of SUMOylation, pharmacologically reactivates IFN1 signaling and immune responses against cancers. In vivo treatment of wild-type mice with TAK-981 up-regulated IFN1 gene expression in blood cells and splenocytes. Ex vivo treatment of mouse and human dendritic cells promoted their IFN1-dependent activation, and vaccination studies in mice demonstrated stimulation of antigen cross-presentation and T cell priming in vivo. TAK-981 also directly stimulated T cell activation, driving enhanced T cell sensitivity and response to antigen ex vivo. Consistent with these observations, TAK-981 inhibited growth of syngeneic A20 and MC38 tumors in mice, dependent upon IFN1 signaling and CD8+ T cells, and associated with increased intratumoral T and natural killer cell number and activation. Combination of TAK-981 with anti-PD1 or anti-CTLA4 antibodies improved the survival of mice bearing syngeneic CT26 and MC38 tumors. In conclusion, TAK-981 is a first-in-class SUMOylation inhibitor that promotes antitumor immune responses through activation of IFN1 signaling. TAK-981 is currently being studied in phase 1 clinical trials (NCT03648372, NCT04074330, NCT04776018, and NCT04381650) for the treatment of patients with solid tumors and lymphomas.


Assuntos
Imunidade , Sumoilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...